从这篇文章开始不打算再花费大量精力去写程序本身的知识,毕竟是各类书籍上有的内容。其余主要需要学习的是内置函数的使用,和一些模块的使用方式,尤其是pycurl, re, threading这些需要慢慢熟悉起来。
若在学习中有不解的地方,在文章评论中可以提出,如果有空会尽力帮忙解答。
程序需求
对于稍大的一个网站,往往会有许多关键词需要每隔一个周期监控它们的排名,以分析SEO效果的好坏,及判断百度Google的动向等等。
有一个关键在于数据的收集全自动与否的问题。若经常用Google Analytics分析数据的话应该会感觉到,数据分析的需求是多种多样的,只有事先已经有了完善的各个维度的数据以后,才能随着最初的想法进行分析,而不会为数据的匮乏所局限。像Google Analytics这样出色的工具完全自动的将这些数据收集了起来,才给SEO对于流量的多样化分析打下了基础。同样的,如果想分析的时候更自由的话,就需要记录尽多种类的历史数据,如果这些作为每日工作,那将耗时非常长,所以自动化的收集就体现出了其重要性。
现有的监控排名主要解决方案是使用商业软件Rank Tracker,但它也有些不是很理想的地方。比如对于几乎所有既有软件都存在的问题,功能不灵活。另外它最大的弊端之一在于它一定要找个具有图形界面的系统运行(因为它是Java实现的,有多操作系统版本,所以不一定是Windows)。
对于DIY的Python脚本,在Linux系统里面可以将其放到crontab中(系统级计划任务),全自动的定时运行收集原始数据。然后在需要的时候,再用另外的脚本来处理原始数据,进行各个维度的分析。所需的一般情况下为:Linux系统的低配置VPS一台,总共不超过100行的Python代码(Windows也能实现这些,但相对比较麻烦)。
然后再来分析更具体的需求。此处我总结了一些原则:
1. 除非数据量大到会对硬盘带来压力(比如每日数G的日志的分析等),不然把能想到的尽多的数据都记录下来。因为分析的需求是多变的,数据若全面即可有备无患。
2. 同上,除非数据量极大,不然务必把历史数据全部保存下来。在大数据量的时候,也需要按实际情况保存一定时间区间的数据(打个比方,前3年每月保存一副本,当年每周保存一副本)。历史数据的对比在很多时候的意义非常大。
评论